Turning triangles into a square!

This resource was written by Derek Smith with the support of CASIO New Zealand. It may be freely
distributed but remains the intellectual property of the author and CASIO.
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using the arrow keys to highlight the RUN-MAT or GRAPH icon
or by pressing the [ 1 ] and [ 3 ] keys respectively.
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Each triangle is of an area of 1 unit, with the short sides of length 1 mu and 2 mu respectively.

Make a square from these 20 triangles below.
Cut out each of the triangles and arrange them so that a solid square is formed (i.e. there are NO gaps, no
overlapping.)

Area of the square to be made = 20 mu.
Let the side of the square be of length x.
2
x =20
Applying the Pythagorean Theorem: 1? + 2> = 1 + 4 = 5 so the hypotenuse of each triangle of V5 mu.
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If we were to take the lengths of the short sides to be whole numbers then what
other right-angled triangles can form a square in this way?
Let the side lengths be ‘a’ and ‘a + 1 respectively: a’ + (a + 1)* is the length of the hypotenuse.

So 2x\(a” + (a+ 1)*) = 2V(2a%> + 2a + 1) is the length of each side of the square.
This give the area of the square to be: 4(2a° + 2a + 1) = 8a> + 8a + 4.

Making a table:
Short side | Short side Hypotenuse Area of each Area of 20 Area of the
length length length triangle triangles square

a a+tl 2V(2a> +2a+ 1) Yha(at+1) 10a(a+1) 8a”+8a+4
1 2 235 1 20 20 = 4x5
2 3 213 3 60 52=4x13
3 4 2\25 6 120 100 = 4x25
4 5 2V41 10 200 164 = 4x41
5 6 2761 15 300 244 = 4x61




As you can see from the table the only way that 20 triangles can be formed with a difference of 1
appears to only be when a = 1.

Let’s apply some algebra!
Area of 20 triangles = 10a(a + 1)
For these two area s to be the same: 10a(a + 1) = 8a” + 8a + 4.

Area of the square = 8a” + 8a + 4
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Enter the equations

Or expanding gives:

Set the V-window

Draw [F6]

10a>+ 10a=8a>+8a+4

2a+2a—-4=0
2a’+a-2)=0
2(a +2)(a—-1)=0
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i.e.a=-2or 1 only yielding a =1 is the only real solution

Will this work for other right-angled triangles of different dimensions? What if the difference between
the two short side lengths are:
2,i.c.aanda+2?

Short side | Short side Hypotenuse Area of each Area of 20 Area of the
length length length triangle triangles square
a at+?2 2\(2a® +2a+ 1) Ysa(atl) 10a(a+1) 8a’+8a+4
1 2 25 1 20 20 = 4x5
2 3 2V13 3 60 52=4x13
3 4 225 6 120 100 = 4x25
4 5 2V41 10 200 164 = 4x41
5 6 261 15 300 244 = 4x61
3,i.c.aanda+3?
Short side | Short side Hypotenuse Area of each Area of 20 Area of the
length length length triangle triangles square
a at3
4,1.e. aand a+4?
Short side | Short side Hypotenuse Area of each Area of 20 Area of the
length length length triangle triangles square
a a+4
n,i.e.aanda+n?
Short side | Short side Hypotenuse Area of each Area of 20 Area of the
length length length triangle triangles square
a atn
Investigate!

For further tips, more helpful information and software support visit our websites
WWW.Mmonacocorp.co.nz/casio or http://graphic-technologies.co.nz




